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ABSTRACT

'The last few years have seen a rapid development of the so-called Lattice

Algorithms for the fast solution of finite data least squares problems. While

a fast algorithm has been given for finite data Instrumental Variable

Recursions, as yet no finite data lattice schemes have been given. In this

work a lattice algorithm is derived for a finite data Instrumental Variable

Recursion and its use in both ARMA and ARMAX Time Series models is indicated.
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SIGNIFICANCE AND EXPLANATION

In the field of signal processing in Electrical Engineering one of the

basic problems is the design of computationally fast algorithms for the

solution of least squares problems. For example in the problem of adaptive

equilization for a communication channel. A signal is transmitted over a

communication channel and received in distorted form. It is then passed

through a linear filter called an equalizer that estimates the original

transmitted signal. Usually the one equalizer must deal with several

communications channels and should have different parameters for each one.

Since the parameter alteration must be done in real time the need for fast

algorithms is apparent. The equalizer problem can be posed as a least squares

problem. Actually fast algorithms for least squares problems have been

recently given. However for some signal processing problems (and equalization

problems) other estimation schemes must be used. This article provides a fast

algorithm for one such scheme, an Instrumental Variable scheme.
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FINITE DATA LATTICE ALGORITHMS
FOR INSTRUMENTAL VARIABLE RECURSIONS

by Victor Solo

0. Introduction

A fundamental position in Signal Processing and Time Series modelling is

occupied by the Autoregressive (AR) model or all-pole linear model driven by

white noise. The infinite data least squares problem (i.e. estimation of the

AR parameters by minimizing an expected squared error) yields a set of

Toeplitz equations for which the Levinson-Whittle-Robinson algorithm provides

a fast solution. This algorithm can also be re-expressed as a lattice

algorithm (LA): in this case it is Burg's algorithm (see Makhoul [3]). When

only finite data is available the theoretical autocorrelations can be replaced

by estimated ones but then the least squares nature of the solution is lost.

Recently Lee et. al. (41, [51, have shown how a fast algorithm (a LA) may be

constructed for a solution to the finite data least squares problem (i.e.

minimization of a sum of squared errors): for a readable discussion see also

Sartorius and Shensa [81 and Shensa [91.

For infinite data Instrumental Variable (IV) estimation of the AR

parameters in a scalar autoregressive Moving Average (ARMA) model, Carayannis

et. al (2] have provided a fast algorithm recently - it is an extension of the

one of Levinson. For finite data IV parameter estimation in general, Ljung

et. al (61 have recently given a fast algorithm but it is not a LA. In this

This work was completed at the Mathematics Research Center, University of
Wisconsin-Madison. The author is with the Department of Statistics, Harvard
University, Cambridge, MA 02138.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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work a finite data LA is given for a general IV problem and its use with ARMA

and ARMAX Time series models is indicated.

Section I contains a derivation of an infinite data LA for IV estimation

of the AR parameters in a block identifiable ARMA model: this discussion

which is much simpler than the finite data case reveals the basic idea used in

all the derivations. In Section II an infinite data LA is derived for a

multivariate model. In Section III a general infinite data IVLA is

presented. In Section IV it is shown how this algorithm may be applied to an

ARMAX (Autoregressive Moving Average Exogenous (i.e. input)) Time series

model.

-2-



I. The ARMA model: infinite data IVLA.

Here we consider the estimation of the AR parameters of an ARMA Time

Series model from the autocorrelations. Actually the scalar version of the

lattice algorithm derived in this section is implicit in Carayannis et. al (2]

article which itself was implicit in the work of Risannen [7) (see C below).

However the present derivation is especially simple and provides a stochastic

interpretation for various quantities appearing in the algorithm. Further,

the arguments used here guide the more complex derivations in the finite data

case of Section II below.

A. Preliminaries

It is well known that the AR parameters of a multivariate ARMA (p,q)

(dimension r) obey the equations
A P  -- 1, qp (1a)

where, with R. E(Z.X t ), R is the nonsymmetric Toeplitz matrix

•- R.. Rqi.l
Rp R-q-Rq-1 * --~

R-q+1

R - ERi .. R - .R
R-q1,-q-p [Rq-1-Rq-2 R -I

Ap - p ... AP)

These equations may be alternately written

i H = -R (ib)-p9 -p -q-1I, -q-p

where

a --A-(A .. A J_ H PJR

and
3- 0 ... 0 1

I0

I . 0-
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Now H is a block Hankel matrix. if nH = rank(H) - rank(R) pr then

the ARMA model is called block identifiable (Akaike [1]) and the p - AR

matrices may be obtained by solving the pr2  equations (1). For the present

discussion the assumption of block identifiability will not be restrictive.

Thus it is henceforth assumed that nH = pr.

B. Derivation

To derive a lattice algorithm begin by introducing the forwards

prediction error

e (n) =y +E m 0 (2a)
-M -1 1 -i ---i

whereAm = (A .*a Am) is defined by an orthogonality condition that ensures
I - -1m

(when m = p) equations (1) hold: namely

E(e (n)(y' ... y_ )) 0 (2b)
- n-q-1 -n-q- -

i.e.

AmR = -R-- - -q-1,-q-m

It will be convenient to introduce the IV sequence z - so that (2b)

can be written

)e (n)(z'- .. = 0 . (2c)m n-I --n- -

It will be seen in what follows that we can, to a large extent, forget that

= - It will also prove convenient to denote the fact that e (n) is a

-- w

linear combination of Yn ... Yn-m with the coefficient on zn being I, by

writing

e (n) -.Zn e Sn+l,n+m = span( 4 .1 ... yn-m) . (3)

Then clearly e(n) is determined uniquely by the two requirements (2c), (3).

The next step in a lattice derivation is to find an order update equation

for e (n). For this, introduce the backward prediction error

r (n-1) - +-E-vB+  
(4a)-in 1 -M+1-i mn-i

where B m (8 ... Bm) is determined by

-4-



E(r (n-)(z ... z' )) 0 (4b)
-in- -- -n-m -

that is BM obeys

BR = (Bm J)R = -R (4c- - ---in-n - -q+mn,-q+l

or

BmR = -R
- --M - -q+l ,-q+m

(in the scalar case cf. expression (f) of Carayannis et. al. (2)).

Note again the rM(n) is uniquely determined by two conditions (4a),

(4d)

r (n) - Yn-m 6 S * (4d)-in ---i nwn+mn-1

Now recall that, by definition

Ee (n)(z' ... z' z' )) = 0 . (5)-M+n -n-1 -in- -n-m-1 -

Next observe that for any K, em(n) + K rm(n-l)-y e Sn+ln+m+l, so if we

choose K to satisfy

E(e (n) + K r (ri-1 ))z = 0
Mi --n -n -

i.e. K =Kr G r -r (6a)
M+l -iM --M

where Gr = E(e (n-l)z' ) (6b)
-i in -n -1

Er E(r (n-1)z' ) (6c)
-in -- M -- n-I

then we must have (via (2c), (3)) that

e+(n) = e (n) + Kr -,r (n-i) (7a)
-a+I -i -iM -in

This is the desired order update for e,(n). (Note the notation

-r = (,r)-1o)
--M --in

Note from (2a), (6b) that

Gr = R + AmJR
-in - -q-n-1 ...- q-1,-q-m

(in the scalar case cf. expression (9) of Crayannis et. al. [2]).

On the other hand comparing coefficients of lagged L's in (7) yields

m+1 =Kr
A m+1  --z+ 1({7b)

-5-
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A!+ =AT -, "  1 j 4 m (7c)
- - -m+1 -3

Next an order updating formula for rk(n) is given. Again beginning with

E(r (n)(z' ... z' ) = 0 (8)
-m+1 nf -n-rn-i -

we see that for any K

r (n-1) + K e m n(n)-Y-m 6 S
-.3n -- n-r-i nfn+m

so if we choose K to obey

E(r (n-1) + K e (n))z' = 0
-I -- in "-1 -

i=e K=K e -G e E -e (9a)
- -in+1 --m -Mn

where Ge = E(r (n-1)z') (9b)
-in M n

E-e = Ee (n)z') (9c)
-m -m -in

we must have, as required

r (n) = r (n-1) + Ke  e (n) (10a)
M M -m+1 --M

Again observe that from (9a), (9b)

Ge =R + Bi
-M - -q+m+1 - -q+1,-q+m

(in the scalar case cf. expression (11) of Carayannis et. al. [2]). On the

other hand comparing once more coefficients of lagged _'s in (10a) gives

e+1 = e (10b)
-m+1 e.+

B. =B.K A *(lOc)
- - A.+1 -(10C

An order update can now be obtained for e, -r" From (7a), (9c) calculate

e = ,e (n)z')
-In+ -n

= V( (n)zl) + K Er E(r (n-1)z')
-i ni -Mn+ 1 -Mn -n

e + r Ge

-M -9+1 -M

(I --K+1 K e)E e by (9a) . (11)

Similarly

r (i. K! K )E . (12)
2+1M+I-=n+I -n

-6-



Initial conditions are

e0(n) yn r E(n)

er = E(X 1 _4_q_) " E(*n 4_q = E .

e r
Note from equations (11), (12) that in the scalar case Z= m rm

C. Connections with Triangular Decompositions.

Recalling equation (4c) consider the following indentity

-mL R L 0 R+R'/U / m\

whr D+1M+ m+1 -q - -q+m,q+1

R m =
-m - -q+m, q+

Clearly recursive application of this identity beginning with I = I_;
R, =i will produce a triangular decomposition of R for each m. Just

such a scheme was given by Risannen [71 and equations (7), (10), (12) form one

half of that scheme. The other half consists of a triple set to produce Nm.

These equations are obtained by replacing R in (7), (10), (12) by Ri

(see Risannen [7]).

To show the equivalence of (7), (10), (12) to Risannen's equations make

the following notation changes:

A~m m INm -MA.= A it B = B 0 4 i 4 M-1
-'; -n-i -i -:i+1

Am
then (b), (7c) read (take A 0 s < 0)

AM+1 m+1 m r _-m
A =A =A +K B
-4 M+1-i -M+1-i -m+1 -m+1-i

(13a)Am KE  0 i~
- +  B o 4m
i-i -+1 -M-i

-7-



similarly (Ioc) is (with B s 0 s < 0)-S

B. =B + A 0 i m (13b)
-1~ -ii i+1 -'M i

These are just equations (3.8), (3.9) of Risannen.

-8- iII iizl ii i



II. ARMA model: finite data IVLA

To use the scheme of Section I the 4 must be replaced by estimates

. * Then however the resulting estimates no longer obey infinite data

orthogonality conditions such as (2b), (4b). Now an algorithm is given which

does obey finite data versions of these orthogonality conditions. It will be

called a finite data LA.

The argument is simplified by using a setting such as that of Shensa

(9]. Here though a vector version of that discussion is needed. If yt is

an r-dimensional discrete time series with 0 0 t < 0, introduce the

infinite data matrix

Also introduce the shift operator (i.e. infinite matrix) 4,

Y= (0, l ....

so = (-1' -Z2' Z3 ...-1& -1

Note that 4 - = I but 4- 4 A I. Define now a "matrix inner-product"

between two data matrices

<X, q> zn Y! (14)

n 0 --1--1

and observe the fundamental relation

-1 n , n-i

X'Y>n 0 i-1 1- 1 -i-1 1 . 0 + *1
(15a)

=X, i >n 1

Notice that -, - need not be of the same dimension for the definition (14)

to make sense. In this respect note for example that if a is an arbitrary

vector (of dimension that of _) then

a'< = 0 ' _j.Xi <a'), n . (15Sb)

Also if w is an infinite data vector aw = (aw, _w _w ... . (15c)

-i
It will be convenient to denote 4 y as yj; so ] = I,-. Thus we will use

-9-
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-qthe IV matrix z = - = . Finally the following time update formulathe V marix /-q

will be useful

<_X Q <XT,.n. " + x . (15d)

A. Lattice Equations: Statement

Proceding by analogy with the infinite data scheme introduce the forward

prediction error

e (n) = Y _ Im A(n)_ (16)"-M 1 _X -1

the kth component for e,(n) is e(k,n) =yk m Am(n)yk Note that the

Am (n) are r x r matrices. These coefficients are determined by the

or thogonality conditions

<e (n), z > = 0 1 4 i 4 m (17a)

equivalently, putting Am(n) = (AIm(n) ... Am (n))

A m(n)R (n) = R (n) (17b)-- - - -q-1 ,-q~-m

where

In, 0 4oZ-1 (--1 ... 4Z-m)'

n

q-l,_q-m (n) = Xo k(ll -. _%m)'•

Thus equations (17) are simply the equations satisfied by the mth order,

finite data, IV estimate of the AR parameters. It is assumed that R (n) is

of rank rm for all n: If E(R m(n)) is of rank rm then this event occurs

with probability one. When q - 0 so that z - equations (17) are the

finite data least-squares equations.

Let us observe that e,(n) is determined uniquely by two conditions:

(17a) and (17)

e (n) - 0 SI m - span(_ 1 , " -m)  (17c)

-10-



This is so since equation (17a) (or (17b)) specifies the coefficients of

-I -m uniquely.

Now introduce a backwards prediction error

rm Bm (n) +r n - 1I -iu+l-i -i+I

where r(n) is determined uniquely by

r () - -m S0,mi (1 8a)

<r (n), z > =0 0 4 i < m-1 (18b)
--n ---I n

Now the lattice equations can be stated as follows: A derivation is

given in B below. Note that the equations are easily modified if the inner

product is changed to

En wn-i XY<1,1 >n =  0n n-w xiy'
n 0 -ii

where 0 < w < 1. This is a suitable form for time varying equations.

Finally it is clear by inspection that the algorithm requires 0(m)

operations.

ORDER UPDATES

* (n) = e (n) + K(n)W r (n-1) (19a)
-+ n - -Mn

r (n) = r (n-i) + Ke(n)e (n) (19b)
+1-in - -M

K r (n) -G Gr (n)E-r (n-i)
-m -- --n

-a -M -i

Ee(n) = (I - Kr(n)Ke (n))e_ (n) (19c)
Mi - -- " -- m -i-I

r r n (I - K e WKr ()Zr(n(1d
--m - --a -M ---I

Initial conditions for these are

so(n) = -yo = Eo~n )  (19e)

Z r (n) - I e (n) E e (-)+ Z 1f

-11-



TIME UPDATES: M ) 1

The first wo calculations must be performed before the next two:

G r (n) G r (n-1) + e (n,.)r' (n-1)-i (n-i,n-1)) -1 (20a)

Ge(fl) G e (n1) + r ( 1 ~n1 )6e' (n)(1 - (n-l.n-1))- I (20b)
-i -in -in -n-i rn-1

& e' '-
6l (n) =6e (n) - 6 rl(n-1 ),- (n-I)Ge(n) (20c)
-mn -in-1 -i-- -m i

6r ' (n) = 6 ' (n-1) - 6e
' ()E-e(n)Gr( n ) . (20d)

-i --m- I -m-1 - --m

The initial conditions are:

G e - e (1) + y z' (20e)6(n) = (n-)+Y- --n

G(n) =G (n-i) + y z' (20f)-o -Lo -n -n-1
|r

6 (n) =z' - z' E -e (n) r
-0 -n-1 --n !()(n) (20g)

6 (n) = z O- E C*(n1)Ge(r) .(20h)

-0 -n -,n-1 -; -O

Initializing values for the whole recursion are

1()= Y= - 1(0)

E r(0) = Ze = Yo ,

- o) (0)

GCO) 0. ()-o0 -o

Finally updates for the scalar m (n,n) are

& (n,n) = (n,n) + arl (nl)-r (r (nn) (21a)
+i n -m -m+l --Mil

& (n,n) , z' -e(nl) . (21b)

-12-



B. Derivation

(1) Order updates for en(n), rM(n)

To find an order update equation for e (n), begin by observing

-m ---i n -m --_i >n-1

-<r m (n-1 ),Z _i+1 >n_1

=0 1 4 i 4 m by (18b) (22)

In view of (17a), (22) consider that for any K

e (n) + K r-Ir (n-1) - YO e S1

-M -in- lrM
-I

<e r(n) + K 4 r (n-i), z > = 0 1 4 i 4 m

Thus if we choose K so that

<e (n) + K -r (n-1), z > 0-In - -n --r-i1n -

i.e. K -G r(n)-r (n-1) (23a)
- -fi -rn

where G r(n) = <e (n), z > (23b)
-- m -- -m-1 n

E r(n-1) r (n-), z = <r (n-1), Z > (23c)
-M -M -- 1 n --M m n-1

then we must have (19a). Note that when using this update only the nth

component need be calculated. Similarly we can find equation (19b) with

Ke(n) = -Ge(n)E e (n) (24a)

-m -m --n

Ge (n) -<4-1 r (n-), Z(24b)
--M -an 0 >n

Te (n) = <e (n), iOn (24c)

-13-



(2) Order Updates for Ee (n), Er (n)
-m

First apply (19a) to

Le (n) <a (nl), ,

<e (n), Kr (n) < r_ (n-1), z>
- -0>n n I -0 n

ze (n) + Kr (n)e (n)

-m-I - -

(I- Kr (n)K e_ (n))Ze (n)

which is equation (19c), Similarly (19d) follows.

(3) Time Updates for e (n), .r(n)

To obtain time updates for Ge (n), Gr (n) (the usual next step) it will
-U -M

be necessary to find time updates for e (n), r (n). It should be noted that

in the least squares case (q = 0), z = L so that G r(n) = Ge'(n). This is
mI -- M

easily seen by observing that z-M-1 M -L--m-1 in (23b) can be replaced by

C-1 r (n-1) since -1 r (n-i) .- I Q S,.. Thus

Gr (n) - <e (n), -1r (n-i)> n  Similarly Ge(n) - <-lr (n-i) 1 (n)>.
-in -m -rn n --n --in ~ )>

To find time updates for e,(n), rm(n) we are guided by conditions

(17a), (17c). Consider then, using (15d), that

<e (n-1), z_ > = <e (n-1), z _ > - e (n.n-i)z' • (25)
-m -i n-i -m _in -i --

This leads us to introduce the infinite data vector

(n) Em- 1  (m-)' e (26a)
rn-h o (n) -i So,

with c (n) - (c-(n) ... c-(n)) (and hence & m-(n)) determined by

<9 (n), z > = zo- 0 4 i < m-I * (26b)
rn-i -- n -n-i

Note there are mr unknowns in cm'1(n) determined by mr equations

(26b). Now observe that

¢-1I.(n-1), z_i .> n <9 <M-I(n-1), z -i+ > n-1

-1Z' 1 4 1 4 M-1

-i-(i-i) "-n-i

I4

-14-



Then consider that (recall (15c))

e (n-1) - e (n,n-1)- 1 m (n-1) - e Sl,m
M~U --M rn-1 ~

while from (25) and the definition of e(n-1)

-1
<e (n-1) - e (n,n-1) -I (n-1),z .-m -m M-1 -1- n

- <e (n-i),z .>n = 0
-U - -i m.

Thus we must have from (17a), (17c)

e (n) - e (n-i) - e (n,n-1)- 1  1 (n-i) . (27a)-t -in -in r-i

Similarly

r (n) - r (n-1) - r (n,n-) m 1 (n) . (27b)

To proceed further it is necessary to provide both order and time updates for

m (n). In the least squares case (q = 0) only time updates were needed.m

(4). Time and Order Updates for m (n)

As usual we are guided by the conditions (26). The order update is

considered first. Begin by recalling three facts

<4 +(n),_ z .> = zo 0 4 i 4 m+1
m+ -- i n -n-i

<t (n), z > = z' . 0 4 i 4 m
m -- i n -i-i

<r (n), z .> = 0 0 4 i 4 m-in+1 --- in -

Further, for any r-vector n

m (in) + n' r m+1(n) e S0, m

Thus if we choose n to satisfy the r equations

<(n) + n' r (n), Z _.> = -'

m Mi+1 - n- n -n-rn-i

i.e. -- -r (n)

where ar (n) - C m(n )> (28a)-0 -n-m-I - -r-i m n

then we must have the desired order update

M+1 (n) - (n) +-6rM() -+m r in) • (29)

-15-



The nth component of this equation is (21a).

To find (21b) take m = 1 in (26b) so

<{ 0(n),_ Z> - z'

O 0'
or go (n) <2,z> =c 0 (n)<y, z> =z'-- n -n -n

00 -e
so 20 (n) = z' E (n) whereupon

Go(n) = z' e(n) (30)

the first component of this is (21b).

We turn now to the time update. This time consider the three facts

<d (n), z _> = Z- 0 4 i 4 m

<4-1 (n-i), z > = <- (n-i), zn-i -- -i n i-i

<e (n), z > = 0 1 4 i 4 m

Further, for any r-vector n

C 1&M_1 (n-1) + _M'e (n) 6 S0,m

thus if we choose n to satisfy the r-equations

<4-i (n-1) + W'e (n), zOn = Z'
rn-I- Ui -~O n-e=

i.e.-= -e'l nz-e (n)
-- f- -i M

where e- (n) z - <Zo,4-l&m_1(n-1)> (28b)
-rn- -n - mn

then we must have from (26) the desired time update

(n) = C-1 & (n-i) + at WE (n e (n) (31)
n Mn-i -1- --m mi

Actually there is also an order change in this equation but that will not

cause a problem. Now it is possible to derive an interconnected set of time

and order updates for the Ge (n), Gr (n), 6e(n), 6 r (n).
-n -M -i---m i

(5). Time and Order Updates for Ga(n), Gr(n), 6 (n), 6r(n)

First time updates are given for G r(n), G (n) and then time/order
Mi -in

updates are given for r(), 6e(n). Begin by applying (27a) to G r(n).-pae aege o n),- -In

-16- I



Gr (n) = <em(n), z-m-l>
-I

- <e (n-1), z > e (n,n-1) < m-l(n-1), z >
S-rn -n-i- n -i n- -- i n

= <e (n-1), z-',n -_ -n-i >n-i

+ e (n,n-1)(zlm - <  (n-1), z
-mn -- i -i - -r n-1

=Gr (n-i) + e (n,n-1)6  1 (n-1) by (28a). (32)-I -n -Mn-i

To reproduce equation (20a) take the nth component of (27a) to see

e (n,n) = e (n,n-1)(1 -M l(n-l,n-1))

and substitute this into (32): equation (20a) results.

Next apply (27b) to Ge (n)

Ge (n) = <C-r (n-i), z > by (24b)
-im --m -0 n

= < -lr (n-2), z>n - r (n-l,n-2) ( C- -1 (n-i),

= < m- r(n-2), O>n-1

+ r (n-l,n-2)(z_ - <C1 l(n- 1 ), Z >
-M ni rn-i -O n

Ge(n-1) + r (n-l,n-2)6e' (n) by (28b) (33)
i --m -n-i

Again (20d) is found from the nth component of (27b) namely

r (n,n) = r (n,n-1)(1 - 1 (n,n))-n -i rn-i

and (putting n to n - i) substituting this in (33).

Now equations (20a), (20b) must be completed by time/order updates for

6e(n) r,) Consider then applying (31) to (28a)

6r'(n) = - < m(n), z

fZ - -1C (n-i), z
-n-m-i M-1 -nm-i n

6 el (n),-e (n)<e (n), z >

-i-i -n --m - -i n

-17-



= -I z > 6e' Z -e WlG r (n)-n-rn-i M~-1 ) - -m n1 -rn-1 -m --M-e r

. r (n-1 ) -< WEe(n), r (n)
-Un-i -- i -n --M

which is equation (20d). For 60(n) using (29) in (28b) gives

6e(.) - z' -
-m - m

= z' - <C 1 ' (n-i), zo>

--n m-O n

Z' 
-C1

6 r' (n-i)Er(n-i)<C- r (n-i), >
--M-1 - 0n

6 (n) - 6 rt (n-)Z-r (n-1)G e(n)-ri r- -rn "-in

which is equation (20c).

Finally we can calculate initial conditions. Now

(n) -z' - - (n), z >
-O -n-i 0 ~ 1- n

6e (n) z' - <?-1 (n-1), zO>
-0 -n 0 -n

however, from equation (30)

r(n) z' -~Si~ (n)
-- n- I -n -O <'-0' -1 'in

= 2'- 21 e nG r (n)
-n-I -n -0 -O

which is (20g). Similarly (20h) follows.
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III. General IV finite data LA

A. Statement

Let 2n, yn, n-n be r-dimensional discrete Time Series and consider the

estimation of the parameters AP = (A ... A ) in the lagged regression model
-x -1 --

(or finite impulse response model)

x = A Y + n n0-_n 1 n ._ -n
by means of an IV sequence zn which is correlated with the Y. but

uncorrelated with the coloured noise fni . The finite data IV estimator

AP(n) is obtained by solving the normal equations
-x

Ex (z' .. z ) A p WE) n**(, . z,
0 -;-k-i I --k-p -,c 0 _k_1 -zk- I -k-p

Note i =0, X -0, -0 i < 0. Now a lattice scheme for solving these

equations will be developed.

Introduce, as expected, the forward prediction error
(n) E Am (n) (34)

-U - ix -

2 m m mNow the mr parameters Am (n) f (A In) ... A m (n)) are uniquely determined

2
by the mr orthogonality conditions

V (n), Z .> -0 1 i m * (35a)-u ---in -

Thus the v i(n) are uniquely determined by the conditions (35a), (35b)--n

V(n) - 1,m " (35b)

Now in searching for an order update equation for V m(n) it becomes

immediately clear that we must also use the backwards prediction error

r (n) = i _Em Bm(n)-

which is determined as in Section II together with

e (n) -y Y -m A(n)Y

-19-



Now the finite data lattice IV recursion can be stated.

Order update: Equations (19), (36)

V (n) = v (n) + K (n)4- r (n-1) (36a)
-i -M --m

K (n) = -G (n)-r (n-1) * (36b)
-xm -xm -i

Time update (m > 1): Equations (20), (37)

K (n) = K (n-i) + V (nn)a6  (n-1)(1- - (n-1,n-1))- (37a)
-)-n -r-1 -1

The initial conditions are
K (n) = K (n-1) + x z- (37b)

KiO 'AC 0 -n --n-i

B. Derivation

To find the order update for V (n) it is only necessary to repeat the-in

type of argument used in Section II to find equations (36) where

G (n) = <V (n), z -m-1*>n (38)
-'m "in - -a-

To complete the algorithm it is sufficient to add a time update for G.(n).

As in Section II this requires a time update for V (n) which is easily seen
-in

to be (cf. derivation of (27a))

V (n) = V (n-i) + V (n,n-1);- F1 (n-1) (39)-u -i n -( 3rn -

Now we find much as before (cf. (32))
G (n) -G (n-i) + v (n'n'1)6'r (n - 1) (40)
GNM -im -U -_

However the nth component of (39) gives

Vm (n,n) - v m (n,n-i)( - 1 (n-ln-i))

and substituting this in (40) gives (37a). Equation (37b) follows from (38)

and (15d).
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IV. Application to IV estimation of scalar ARMAX Time Series Models

Consider the estimation of the parameters a, b in the ARMAX Time Series

model

(1 + a(L))x = b(L)un + (1 + c(L))

This model is basic in Identification, Econometrics and Time Series (L is the

backshift operator; a(L) =E a.Ll; a = (a ... a ) etc.). If we write this
1 1 p

model in regression form as

x= EPa'

n I -Xi -n-i n

where

(Xnun)' ; ax. = (aibi)'; nn = (1 + c(L))c

then the simplest IV scheme uses the IV sequence

z = YVp_, *

To find a finite data lattice recursion we begin as earlier by

introducing the forward prediction error

e (n) =x - Em OP(n)_ (41)
xm 0 1 -i

where X,y are the infinite data quantities

X= ( 1X, 1, ..

Y = (Y-0,,, ,,,u .- .

The parameters -%'(n) - (am (n) " a" - (n)) are determined by the equations
K -xi -xm

<emn -n = 0 1 i m (42)

where Z is the infinite data matrix

z = (z ,

As before an order update for exm(n) necessitates the introduction of

the backward prediction order

r (n) E £. m (43)-in -m 1 - -i

Now it is clear from Section II that calculation of this requires parallel

calculation (via equations (19), (20)) of the forward prediction error

-21-
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2 (n Em (n)! L (44)

Now recall that e(n) is defined by the equations

<e (n), z .> = 0 1 4 i 4 m . (17a)
-m -1n -

However since the first row of U is X0  the first row of equation (17a) is

just equation (42). To put it another way, the first row of 2(n) is

e W(n). Thus the solution of the present problem is necessarily obtained by

the algorithm of Section II. This means in effect that 'to estimate ap  by a

lattice scheme we must fit the model

y - ZpAp y +
-n 1 L-i -n-i --h

i.e. the scalar ARMAX problem is naturally imbedded in an ARMA problem (of
dimension 2). In the least squares case (z. L .i this idea has been used

by Lee et. al. [4) though they did not point out its natural appearance. Thus

it is not necessary as suggested in (41 that un  obey an ARMA model for the

lattice algorithm to work (in the IV case or AR in the least squares case).

All that is needed is that the algorithm produce a solution to equation (42);

which it does. The fact that it does so by fitting an ARMA model to un (or

AR model in the least squares case) is (in this respect) incidental.

Finally it is worth observing that the discussion of this section will

carry over to the case of a multivariate ARMAX model

(I + A(L))xn = B(L)u + (I + c(L))G

(here A(L) = p Li etc.) in which the block Hankel matrix based on the

2r-vector sequence 4 W ( u') has rank 2pr.
-n -- ni

Conclusion

This article has provided a finite data lattice algorithm for the fast

solution of equations arising for instrumental variable estimation of

parameters in Time Series models. Two basic finite data algorithms have been

-22-



presented. One is for the fast solution of the equations satisfied by the AR

parameters in a block identifiable multivariate ARMA model. The other

algorithm is for the instrumental variable estimation of parameters in a

multivariate logged regression model (or finite impulse response model) with

coloured disturbance noise. It turns out that the instrumental variable

estimation of the transfer function parameters in scalar ARMAX Time Series

model can be naturally embedded into the lagged regression model so the second

finite data lattice algorithm can be applied.

A natural problem for future investigation is the derivation of a finite

data lattice algorithm for solving equations from multivariate ARMA models

that are not block identifiable. This would include the general ARMAX case

too.
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